Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(12): 14455-14464, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559938

RESUMO

Wastewater treatment produces a large amount of sludge, where the minimizing of the disposed sludge is essential for environmental protection. The co-combustion of sludge with coal is a preferable method for sewage sludge disposal from the economic and environmental perspective. The co-combustion of sludge has been widely used in the industry with the advantages of large processing capacity. The melting characteristics of ash are an important criterion for the selection of the co-combustion methods and furnace types. In this study, two types of sludge and four types of coal with different ash melting points were selected, where the ash melting behavior upon co-combustion is investigated by experimental and thermodynamical approaches. Especially, the slag fluidity upon co-combustion is explored via a modified inclined plane method. It has been found that the presence of SiO2 and CaO in sludge substantially enhances its fusion temperature owing to the high content of CaO, while SiO2 acts as a solvent, facilitating the co-melting of other oxides and raising the sludge fusion temperature. Fe2O3 exhibits a specific mass fraction within the range of 10-20%. Furthermore, the presence of CaO and SiO2 prohibits the flow ability of the slag at high temperatures, and Fe2O3 promotes the flow ability for sludge at high temperatures. With increasing base/acid ratio, the sludge flow velocity increases remarkably and peaks at 1.6. The interaction between Fe-Ca and Si-AI significantly affects the fluidity significantly. The findings are expected to optimize the condition of co-combustion and desirable furnace design for the incineration of sludge.

2.
J Am Chem Soc ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632847

RESUMO

Lithium metal batteries (LMB) have high energy densities and are crucial for clean energy solutions. The characterization of the lithium metal interphase is fundamentally and practically important but technically challenging. Taking advantage of synchrotron X-ray, which has the unique capability of analyzing crystalline/amorphous phases quantitatively with statistical significance, we study the composition and dynamics of the LMB interphase for a newly developed important LMB electrolyte that is based on fluorinated ether. Pair distribution function analysis revealed the sequential roles of the anion and solvent in interphase formation during cycling. The relative ratio between Li2O and LiF first increases and then decreases during cycling, suggesting suppressed Li2O formation in both initial and long extended cycles. Theoretical studies revealed that in initial cycles, this is due to the energy barriers in many-electron transfer. In long extended cycles, the anion decomposition product Li2O encourages solvent decomposition by facilitating solvent adsorption on Li2O which is followed by concurrent depletion of both. This work highlights the important role of Li2O in transitioning from an anion-derived interphase to a solvent-derived one.

3.
Nature ; 627(8003): 313-320, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480964

RESUMO

Intrinsically stretchable electronics with skin-like mechanical properties have been identified as a promising platform for emerging applications ranging from continuous physiological monitoring to real-time analysis of health conditions, to closed-loop delivery of autonomous medical treatment1-7. However, current technologies could only reach electrical performance at amorphous-silicon level (that is, charge-carrier mobility of about 1 cm2 V-1 s-1), low integration scale (for example, 54 transistors per circuit) and limited functionalities8-11. Here we report high-density, intrinsically stretchable transistors and integrated circuits with high driving ability, high operation speed and large-scale integration. They were enabled by a combination of innovations in materials, fabrication process design, device engineering and circuit design. Our intrinsically stretchable transistors exhibit an average field-effect mobility of more than 20 cm2 V-1 s-1 under 100% strain, a device density of 100,000 transistors per cm2, including interconnects and a high drive current of around 2 µA µm-1 at a supply voltage of 5 V. Notably, these achieved parameters are on par with state-of-the-art flexible transistors based on metal-oxide, carbon nanotube and polycrystalline silicon materials on plastic substrates12-14. Furthermore, we realize a large-scale integrated circuit with more than 1,000 transistors and a stage-switching frequency greater than 1 MHz, for the first time, to our knowledge, in intrinsically stretchable electronics. Moreover, we demonstrate a high-throughput braille recognition system that surpasses human skin sensing ability, enabled by an active-matrix tactile sensor array with a record-high density of 2,500 units per cm2, and a light-emitting diode display with a high refreshing speed of 60 Hz and excellent mechanical robustness. The above advancements in device performance have substantially enhanced the abilities of skin-like electronics.


Assuntos
Desenho de Equipamento , Pele , Transistores Eletrônicos , Dispositivos Eletrônicos Vestíveis , Humanos , Silício , Nanotubos de Carbono , Tato
4.
ACS Nano ; 18(10): 7334-7345, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38421637

RESUMO

All-solid-state batteries (ASSBs) working at room and mild temperature have demonstrated inspiring performances over recent years. However, the kinetic attributes of the interface applicable to the subzero temperatures are still unidentified, restricting the low-temperature interface design and operation. Herein, a host of cathode interfaces are constructed and investigated to unlock the critical interface features required for cryogenic temperatures. The unstable interface between LiNi0.90Co0.05Mn0.05O2 (Ni90) and Li6PS5Cl (LPSC) sulfide solid electrolyte (SE) results in unfavorable cathode-electrolyte interphase (CEI) and sluggish lithium-ion transport across the CEI. After inserting a Li2ZrO3 (LZO) coating layer, the activation energy of the Ni90@LZO/sulfide SE interface can be reduced from 60.19 kJ mol-1 to 41.39 kJ mol-1 owing to the suppressed interfacial reactions. Through replacing the LPSC SE and LZO coating layer by the Li3InCl6 (LIC) halide SE, both a highly stable interface and low activation energy (25.79 kJ mol-1) can be achieved, thus realizing an improved capacity retention (26.9%) at -30 °C for the Ni90/LIC/LPSC/Li-In ASSB. Moreover, theoretical evaluation clarifies that cathode/SE interfaces with high ionic conductivity and low energy barrier are favorable to the Li+ conduction through the interphase and the Li+ transfer across the cathode/interphase interface. These critical understandings may provide guidance for low-temperature interface design in ASSBs.

5.
Small ; : e2308109, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37988717

RESUMO

Silicon is regarded as the most promising candidate due to its ultrahigh theoretical energy density (4200 mAh g-1 ). However, the large volume expansion of silicon nanoparticles would result in the destruction of electrodes and a shortened cycle lifetime. Here, inspired by the natural structure of bamboo, the silicon anode with vascular bundle-like structure is proposed to improve the electrochemical performance for the first time. The dense channel wall in the silicon anode can accommodate the volume change of silicon nanoparticles and the transport of ions and electrons is also enhanced. The obtained silicon anodes display excellent mechanical properties (50% compression resilience and the average peel force of 4.34 N) and good wettability. What more, the silicon anodes exhibit high initial coulombic efficiency (94.5%), excellent cycle stability (2100 mAh g-1 after 300 cycles) which stands out among the silicon anodes. Specially, the silicon anode with impressive areal capacity of 36.36 mAh cm-2 and initial coulombic efficiency of 84% is also achieved. This work offers a novel and efficient strategy for the preparation of the flexible electrodes with outstanding performance.

6.
Nano Lett ; 23(16): 7524-7531, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37565722

RESUMO

The composition of the solid electrolyte interphase (SEI) plays an important role in controlling Li-electrolyte reactions, but the underlying cause of SEI composition differences between electrolytes remains unclear. Many studies correlate SEI composition with the bulk solvation of Li ions in the electrolyte, but this correlation does not fully capture the interfacial phenomenon of SEI formation. Here, we provide a direct connection between SEI composition and Li-ion solvation by forming SEIs using polar substrates that modify interfacial solvation structures. We circumvent the deposition of Li metal by forming the SEI above Li+/Li redox potential. Using theory, we show that an increase in the probability density of anions near a polar substrate increases anion incorporation within the SEI, providing a direct correlation between interfacial solvation and SEI composition. Finally, we use this concept to form stable anion-rich SEIs, resulting in high performance lithium metal batteries.

7.
Proc Natl Acad Sci U S A ; 120(31): e2301260120, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37487097

RESUMO

Lithium-sulfur (Li-S) batteries with high energy density and low cost are promising for next-generation energy storage. However, their cycling stability is plagued by the high solubility of lithium polysulfide (LiPS) intermediates, causing fast capacity decay and severe self-discharge. Exploring electrolytes with low LiPS solubility has shown promising results toward addressing these challenges. However, here, we report that electrolytes with moderate LiPS solubility are more effective for simultaneously limiting the shuttling effect and achieving good Li-S reaction kinetics. We explored a range of solubility from 37 to 1,100 mM (based on S atom, [S]) and found that a moderate solubility from 50 to 200 mM [S] performed the best. Using a series of electrolyte solvents with various degrees of fluorination, we formulated the Single-Solvent, Single-Salt, Standard Salt concentration with Moderate LiPSs solubility Electrolytes (termed S6MILE) for Li-S batteries. Among the designed electrolytes, Li-S cells using fluorinated-1,2-diethoxyethane S6MILE (F4DEE-S6MILE) showed the highest capacity of 1,160 mAh g-1 at 0.05 C at room temperature. At 60 °C, fluorinated-1,4-dimethoxybutane S6MILE (F4DMB-S6MILE) gave the highest capacity of 1,526 mAh g-1 at 0.05 C and an average CE of 99.89% for 150 cycles at 0.2 C under lean electrolyte conditions. This is a fivefold increase in cycle life compared with other conventional ether-based electrolytes. Moreover, we observed a long calendar aging life, with a capacity increase/recovery of 4.3% after resting for 30 d using F4DMB-S6MILE. Furthermore, the correlation between LiPS solubility, degree of fluorination of the electrolyte solvent, and battery performance was systematically investigated.

8.
Nat Nanotechnol ; 18(10): 1175-1184, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37322142

RESUMO

Stretchable polymer semiconductors (PSCs) are essential for soft stretchable electronics. However, their environmental stability remains a longstanding concern. Here we report a surface-tethered stretchable molecular protecting layer to realize stretchable polymer electronics that are stable in direct contact with physiological fluids, containing water, ions and biofluids. This is achieved through the covalent functionalization of fluoroalkyl chains onto a stretchable PSC film surface to form densely packed nanostructures. The nanostructured fluorinated molecular protection layer (FMPL) improves the PSC operational stability over an extended period of 82 days and maintains its protection under mechanical deformation. We attribute the ability of FMPL to block water absorption and diffusion to its hydrophobicity and high fluorination surface density. The protection effect of the FMPL (~6 nm thickness) outperforms various micrometre-thick stretchable polymer encapsulants, leading to a stable PSC charge carrier mobility of ~1 cm2 V-1 s-1 in harsh environments such as in 85-90%-humidity air for 56 days or in water or artificial sweat for 42 days (as a benchmark, the unprotected PSC mobility degraded to 10-6 cm2 V-1 s-1 in the same period). The FMPL also improved the PSC stability against photo-oxidative degradation in air. Overall, we believe that our surface tethering of the nanostructured FMPL is a promising approach to achieve highly environmentally stable and stretchable polymer electronics.

9.
Proc Natl Acad Sci U S A ; 120(10): e2214357120, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848560

RESUMO

Improving Coulombic efficiency (CE) is key to the adoption of high energy density lithium metal batteries. Liquid electrolyte engineering has emerged as a promising strategy for improving the CE of lithium metal batteries, but its complexity renders the performance prediction and design of electrolytes challenging. Here, we develop machine learning (ML) models that assist and accelerate the design of high-performance electrolytes. Using the elemental composition of electrolytes as the features of our models, we apply linear regression, random forest, and bagging models to identify the critical features for predicting CE. Our models reveal that a reduction in the solvent oxygen content is critical for superior CE. We use the ML models to design electrolyte formulations with fluorine-free solvents that achieve a high CE of 99.70%. This work highlights the promise of data-driven approaches that can accelerate the design of high-performance electrolytes for lithium metal batteries.

10.
ACS Nano ; 17(3): 3168-3180, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36700841

RESUMO

Inorganic-rich solid-electrolyte interphases (SEIs) on Li metal anodes improve the electrochemical performance of Li metal batteries (LMBs). Therefore, a fundamental understanding of the roles played by essential inorganic compounds in SEIs is critical to realizing and developing high-performance LMBs. Among the prevalent SEI inorganic compounds observed for Li metal anodes, Li3N is often found in the SEIs of high-performance LMBs. Herein, we elucidate new features of Li3N by utilizing a suspension electrolyte design that contributes to the improved electrochemical performance of the Li metal anode. Through empirical and computational studies, we show that Li3N guides Li electrodeposition along its surface, creates a weakly solvating environment by decreasing Li+-solvent coordination, induces organic-poor SEI on the Li metal anode, and facilitates Li+ transport in the electrolyte. Importantly, recognizing specific roles of SEI inorganics for Li metal anodes can serve as one of the rational guidelines to design and optimize SEIs through electrolyte engineering for LMBs.

11.
Adv Sci (Weinh) ; 10(6): e2205590, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36563132

RESUMO

Silicon is expected to become the ideal anode material for the next generation of high energy density lithium battery because of its high theoretical capacity (4200 mAh g-1 ). However, for silicon electrodes, the initial coulombic efficiency (ICE) is low and the volume of the electrode changes by over 300% after lithiation. The capacity of the silicon electrode decreases rapidly during cycling, hindering the practical application. In this work, a slidable and highly ionic conductive flexible polymer binder with a specific single-ion structure (abbreviated as SSIP) is presented in which polyrotaxane acts as a dynamic crosslinker. The ionic conducting network is expected to reduce the overall resistance, improve ICE and stabilize the electrode interface. Furthermore, the introduction of slidable polyrotaxane increases the reversible dynamics of the binder and improves the long-term cycling stability and rate performance. The silicon anode based on SSIP provides a discharge capacity of ≈1650 mAh g-1 after 400 cycles at 0.5C with a high ICE of upto 92.0%. Additionally, the electrode still exhibits a high ICE of 87.5% with an ultra-high Si loading of 3.84 mg cm-2 and maintains a satisfying areal capacity of 5.9 mAh cm-2 after 50 cycles, exhibiting the potential application of SSIP in silicon-based anodes.

12.
Nat Commun ; 13(1): 7091, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402759

RESUMO

Fast-charging is considered as one of the most desired features needed for lithium-ion batteries to accelerate the mainstream adoption of electric vehicles. However, current battery charging protocols mainly consist of conservative rate steps to avoid potential hazardous lithium plating and its associated parasitic reactions. A highly sensitive onboard detection method could enable battery fast-charging without reaching the lithium plating regime. Here, we demonstrate a novel differential pressure sensing method to precisely detect the lithium plating event. By measuring the real-time change of cell pressure per unit of charge (dP/dQ) and comparing it with the threshold defined by the maximum of dP/dQ during lithium-ion intercalation into the negative electrode, the onset of lithium plating before its extensive growth can be detected with high precision. In addition, we show that by integrating this differential pressure sensing into the battery management system (BMS), a dynamic self-regulated charging protocol can be realized to effectively extinguish the lithium plating triggered by low temperature (0 °C) while the conventional static charging protocol leads to catastrophic lithium plating at the same condition. We propose that differential pressure sensing could serve as an early nondestructive diagnosis method to guide the development of fast-charging battery technologies.

13.
Nat Commun ; 13(1): 3986, 2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35821247

RESUMO

The electrodeposition of low surface area lithium is critical to successful adoption of lithium metal batteries. Here, we discover the dependence of lithium metal morphology on electrical resistance of substrates, enabling us to design an alternative strategy for controlling lithium morphology and improving electrochemical performance. By modifying the current collector with atomic layer deposited conductive (ZnO, SnO2) and resistive (Al2O3) nanofilms, we show that conductive films promote the formation of high surface area lithium deposits, whereas highly resistive films promote the formation of lithium clusters of low surface area. We reveal an electrodeposition mechanism in which radial diffusion of electroactive species is promoted on resistive substrates, resulting in lateral growth of large (150 µm in diameter) planar lithium deposits. Using resistive substrates, similar lithium morphologies are formed in three distinct classes of electrolytes, resulting in up to ten-fold improvement in battery performance. Ultimately, we report anode-free pouch cells using the Al2O3-modified copper that maintain 60 % of their initial discharge capacity after 100 cycles, displaying the benefits of resistive substrates for controlling lithium electrodeposition.

14.
Nature ; 603(7902): 624-630, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322250

RESUMO

Next-generation light-emitting displays on skin should be soft, stretchable and bright1-7. Previously reported stretchable light-emitting devices were mostly based on inorganic nanomaterials, such as light-emitting capacitors, quantum dots or perovskites6-11. They either require high operating voltage or have limited stretchability and brightness, resolution or robustness under strain. On the other hand, intrinsically stretchable polymer materials hold the promise of good strain tolerance12,13. However, realizing high brightness remains a grand challenge for intrinsically stretchable light-emitting diodes. Here we report a material design strategy and fabrication processes to achieve stretchable all-polymer-based light-emitting diodes with high brightness (about 7,450 candela per square metre), current efficiency (about 5.3 candela per ampere) and stretchability (about 100 per cent strain). We fabricate stretchable all-polymer light-emitting diodes coloured red, green and blue, achieving both on-skin wireless powering and real-time displaying of pulse signals. This work signifies a considerable advancement towards high-performance stretchable displays.

15.
Science ; 375(6576): 66-70, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34990230

RESUMO

Although liquid-solid interfaces are foundational in broad areas of science, characterizing this delicate interface remains inherently difficult because of shortcomings in existing tools to access liquid and solid phases simultaneously at the nanoscale. This leads to substantial gaps in our understanding of the structure and chemistry of key interfaces in battery systems. We adopt and modify a thin film vitrification method to preserve the sensitive yet critical interfaces in batteries at native liquid electrolyte environments to enable cryo­electron microscopy and spectroscopy. We report substantial swelling of the solid-electrolyte interphase (SEI) on lithium metal anode in various electrolytes. The swelling behavior is dependent on electrolyte chemistry and is highly correlated to battery performance. Higher degrees of SEI swelling tend to exhibit poor electrochemical cycling.

16.
Nat Mater ; 21(4): 445-454, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35039645

RESUMO

Designing a stable solid-electrolyte interphase on a Li anode is imperative to developing reliable Li metal batteries. Herein, we report a suspension electrolyte design that modifies the Li+ solvation environment in liquid electrolytes and creates inorganic-rich solid-electrolyte interphases on Li. Li2O nanoparticles suspended in liquid electrolytes were investigated as a proof of concept. Through theoretical and empirical analyses of Li2O suspension electrolytes, the roles played by Li2O in the liquid electrolyte and solid-electrolyte interphases of the Li anode are elucidated. Also, the suspension electrolyte design is applied in conventional and state-of-the-art high-performance electrolytes to demonstrate its applicability. Based on electrochemical analyses, improved Coulombic efficiency (up to ~99.7%), reduced Li nucleation overpotential, stabilized Li interphases and prolonged cycle life of anode-free cells (~70 cycles at 80% of initial capacity) were achieved with the suspension electrolytes. We expect this design principle and our findings to be expanded into developing electrolytes and solid-electrolyte interphases for Li metal batteries.


Assuntos
Fontes de Energia Elétrica , Lítio , Eletrodos , Eletrólitos
17.
Nature ; 600(7890): 659-663, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34937896

RESUMO

The increasing demand for next-generation energy storage systems necessitates the development of high-performance lithium batteries1-3. Unfortunately, current Li anodes exhibit rapid capacity decay and a short cycle life4-6, owing to the continuous generation of solid electrolyte interface7,8 and isolated Li (i-Li)9-11. The formation of i-Li during the nonuniform dissolution of Li dendrites12 leads to a substantial capacity loss in lithium batteries under most testing conditions13. Because i-Li loses electrical connection with the current collector, it has been considered electrochemically inactive or 'dead' in batteries14,15. Contradicting this commonly accepted presumption, here we show that i-Li is highly responsive to battery operations, owing to its dynamic polarization to the electric field in the electrolyte. Simultaneous Li deposition and dissolution occurs on two ends of the i-Li, leading to its spatial progression toward the cathode (anode) during charge (discharge). Revealed by our simulation results, the progression rate of i-Li is mainly affected by its length, orientation and the applied current density. Moreover, we successfully demonstrate the recovery of i-Li in Cu-Li cells with >100% Coulombic efficiency and realize LiNi0.5Mn0.3Co0.2O2 (NMC)-Li full cells with extended cycle life.

18.
ACS Cent Sci ; 7(10): 1657-1667, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34729409

RESUMO

Shape memory polymers are promising materials in many emerging applications due to their large extensibility and excellent shape recovery. However, practical application of these polymers is limited by their poor energy densities (up to ∼1 MJ/m3). Here, we report an approach to achieve a high energy density, one-way shape memory polymer based on the formation of strain-induced supramolecular nanostructures. As polymer chains align during strain, strong directional dynamic bonds form, creating stable supramolecular nanostructures and trapping stretched chains in a highly elongated state. Upon heating, the dynamic bonds break, and stretched chains contract to their initial disordered state. This mechanism stores large amounts of entropic energy (as high as 19.6 MJ/m3 or 17.9 J/g), almost six times higher than the best previously reported shape memory polymers while maintaining near 100% shape recovery and fixity. The reported phenomenon of strain-induced supramolecular structures offers a new approach toward achieving high energy density shape memory polymers.

19.
J Am Chem Soc ; 143(44): 18703-18713, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709034

RESUMO

1,2-Dimethoxyethane (DME) is a common electrolyte solvent for lithium metal batteries. Various DME-based electrolyte designs have improved long-term cyclability of high-voltage full cells. However, insufficient Coulombic efficiency at the Li anode and poor high-voltage stability remain a challenge for DME electrolytes. Here, we report a molecular design principle that utilizes a steric hindrance effect to tune the solvation structures of Li+ ions. We hypothesized that by substituting the methoxy groups on DME with larger-sized ethoxy groups, the resulting 1,2-diethoxyethane (DEE) should have a weaker solvation ability and consequently more anion-rich inner solvation shells, both of which enhance interfacial stability at the cathode and anode. Experimental and computational evidence indicates such steric-effect-based design leads to an appreciable improvement in electrochemical stability of lithium bis(fluorosulfonyl)imide (LiFSI)/DEE electrolytes. Under stringent full-cell conditions of 4.8 mAh cm-2 NMC811, 50 µm thin Li, and high cutoff voltage at 4.4 V, 4 M LiFSI/DEE enabled 182 cycles until 80% capacity retention while 4 M LiFSI/DME only achieved 94 cycles. This work points out a promising path toward the molecular design of non-fluorinated ether-based electrolyte solvents for practical high-voltage Li metal batteries.

20.
Nat Commun ; 12(1): 5701, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588448

RESUMO

Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C-H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm2 V-1 s-1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...